Sains Malaysiana
52(7)(2023): 1955-1966
http://doi.org/10.17576/jsm-2023-5207-05
Genomic Analysis of a Novel Antarctic Bacterium, Cryobacterium sp. SO2 Provides Insights into its Genomic Potential for Production of
Antimicrobial Compounds
(Analisis Genom Bakteria Antartika Baharu, Cryobacterium sp. SO2
Memberi Cerapan tentang Potensi Genomnya untuk Pengeluaran Sebatian Antimikrob)
TEOH, C.P.1, LAVIN,
P.2, GONZÁLEZ-ARAVENA, M.3 & WONG, C.M.V.L.1*
1Biotechnology Research Institute,
Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
2Departamento
de Biotecnologia, Facultad de Ciencias del Mar y Recursos Biologicos,
Universidad de Antofagasta, 601 Avenida Angamos, Antofagasta 1270300, Chile
3Instituto
Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile
Diserahkan: 17 Februari
2023/Diterima: 19 Jun 2023
Abstract
A novel strain of Cryobacterium designated as SO2, was isolated from the Antarctic. Hence, this study was
undertaken to gain
further insight into the antimicrobial compounds and secondary metabolites
produced by Cryobacterium sp. SO2. It was found that strain SO2 is a Gram-positive that exhibits an
irregular rod shape, which formed yellow to orange pigmented colonies on semi-solid
media. Strain SO2 grows at temperatures ranging from 4 to 25 ºC. It has a
complete genomic size of 4.097 Mb. SO2 has a DNA G+C content of 68.43%, and
genomic annotation showed that the genome contained 3,862 CDS, 10 rRNA, 55 tRNA
and 1 tm-RNA. Phylogenetic and OrthoANI analysis suggested Cryobacterium sp. strains
SO1, N22, TMB1-8, LW097, TMN39-1, C. zongtaii TMN-42, C. arcticum PAMC27867
and C. soli GCJ02 as its closest phylogenetic neighbour. Genome
annotation shows that strain SO2 confers β-lactamase class A, cephalosporin-C deacetylases, and 27
drug-resistance encoding genes, and allows resistance to ceftazidime. Functional annotation
identifies 28.74% of predicted genes
are of unknown functions. Genome mining indicates that there are six putative secondary
metabolite gene clusters in strain SO2. They are made up of RRE-containing,
terpene, beta-lactone, T3PKS, NAPAA, and 2dos. This finding shows strain SO2
harbours genes that may be involved in the production of compounds with
antibacterial and antioxidant activities.
Keywords: Complete genome; Cryobacterium sp.; drug-resistant;
psychrotolerant; secondary metabolite gene cluster
Abstrak
Strai baaruCryobacterium yang ditetapkan sebagai SO2 telah dipencilkan dari Antartika. Oleh itu, kajian
ini dijalankan untuk mendapatkan pemahaman yang lebih mendalam mengenai
sebatian antimikrob dan penghasilan metabolit sekunder oleh Cryobacterium sp.
SO2. Didapati bahawa strain SO2 adalah Gram-positif yang mempamerkan bentuk rod
yang tidak teratur, yang membentuk koloni berpigmen kuning hingga oren pada
media separa pepejal. Strain SO2 tumbuh pada suhu antara 4 hingga 25 ºC. Saiz
genomnya yang lengkap adalah 4.097 Mb. Strain SO2 mempunyai kandungan G+C DNA
sebanyak 68.43% dan anotasi genom menunjukkan terdapatnya 3,862 CDS, 10 rRNA,
55 tRNA dan 1 tm-RNA. Analisis filogenetik dan OrthoANI mencadangkan Cryobacterium sp strain SO1, N22, TMB1-8, LW097,
TMN39-1, C. zongtaii TMN-42, C. arcticum PAMC27867 dan C. soli GCJ02 merupakan jiran filogenetik terdekat. Anotasi genom menunjukkan bahawa
strain SO2 mengandungi β-laktamase kelas A, cephalosporin-C deacetylases dan 27 gen kerintangan dadah dan menyebabkan kerintangan strain SO2 terhadap
ceftazidime. Anotasi kefungsian mengenal pasti 28.74% gen yang diramalkan
mempunyai fungsi yang tidak diketahui. Perlombongan genom strain SO2
menunjukkan terdapatnya enam kluster gen metabolit sekunder. Mereka terdiri daripada RRE, terpena, beta-lakton, T3PKS, NAPAA
dan 2dos. Penemuan ini menunjukkan strain SO2 mengandungi gen yang mungkin
terlibat dalam aktiviti antibakteria dan antioksidan.
Kata
kunci: Cryobacterium sp.; genom lengkap; kerintangan dadah; kluster gen metabolit sekunder;
psikrotoleran
RUJUKAN
Bajerski, F., Ganzert, L.,
Mangelsdorf, K., Lipski, A. & Wagner, D. 2011. Cryobacterium arcticum sp.
nov., a psychrotolerant bacterium from an Arctic soil. International Journal
of Systematic and Evolutionary Microbiology 61(8): 1849-1853.
Bakermans, C. 2012. Psychrophiles:
Life in the cold. In Extremophiles: Microbiology and Biotechnology, edited by Anitori, R.P. Poole: Caister Academic Press. pp. 53-60.
Bentley, S.D., Chater, K.F.,
Cerdeño-Tárraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E.,
Quail, M.A., Kieser, H., Harper, D. & Bateman, A. 2002. Complete genome
sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417(6885): 141-147.
Bérdy, J. 2005. Bioactive microbial
metabolites. The Journal of Antibiotics 58(1): 1-26.
Centers for Disease Control and
Prevention (CDC). 2013. Antibiotic Resistance Threats in the United States,
2013. Centers for Disease Control and Prevention, Office of Infectious
Disease Antibiotic Resistance Threats in the United States, 2013, accessed 25th May 2023 https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
Darling, A.E., Jospin, G., Lowe, E.,
Matsen, F.A., Bik, H.M. & Eisen, J.A. 2014. PhyloSift: phylogenetic
analysis of genomes and metagenomes. PeerJ 2: e243.
https://doi.org/10.7717/peerj.243
Dharmaraj, S. 2010. Marine Streptomyces as a novel source of bioactive substances. World Journal of Microbiology
and Biotechnology 26(12): 2123-2139.
Guimarães, L.C., de Jesus, L.B.,
Viana, M.V.C., Silva, A., Ramos, R.T.J., Soares, S.C. & Azevedo, V. 2015.
Inside the pan-genome-methods and software overview. Current Genomics 16: 245-252.
Hassan, S.S. & Shaikh, A.L.
2017. Marine actinobacteria as a drug treasure house. Biomedicine &
Pharmacotherapy 87: 46-57.
Huerta-Cepas, J., Forslund, K.,
Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering, C., & Bork, P.
2017. Fast genome-wide functional annotation through orthology assignment by
eggNOG-Mapper. Molecular Biology and Evolution 34(8): 2115-2122.
Huerta-Cepas, J., Szklarczyk, D.,
Forslund, K., Cook, H., Heller, D., Walter, M.C., Rattei, T., Mende, D.R.,
Sunagawa, S., Kuhn, M., Jensen, L.J., von Mering, C. & Bork, P. 2016.
eggNOG 4.5: A hierarchical orthology framework with improved functional
annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids
Research 44(D1): D286-D293.
Hunt, M., de Silva, N., Otto, T.D.,
Parkhill, J., Keane, J.A. & Harris, S.R. 2015. Circlator: Automated
circularization of genome assemblies using long sequencing reads. Genome
Biology 16(1): 294.
Kanehisa, M., Sato, Y. &
Morishima, K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional
characterization of genome and metagenome sequences. Journal of Molecular
Biology 428(4): 726-731.
Kaulmann, A. & Bohn, T. 2014.
Carotenoids, inflammation, and oxidative stress -implications of cellular
signaling pathways and relation to chronic disease prevention. Nutrition
Research 34(11): 907-929.
Koren, S., Walenz, B.P., Berlin, K.,
Miller, J.R., Bergman, N.H. & Phillippy, A.M. 2017. Canu: Scalable and accurate
long-read assembly via adaptive k -mer weighting and repeat separation. Genome
Research 27(5): 722-736.
Lee, I., Ouk Kim, Y., Park, S.C.
& Chun, J. 2016. OrthoANI: An improved algorithm and software for
calculating average nucleotide identity. International Journal of Systematic
and Evolutionary Microbiology 66(2): 1100-1103.
Manivasagan, P., Kang, K.H.,
Sivakumar, K., Li-Chan, E.C.Y., Oh, H.M. & Kim, S.K. 2014. Marine
actinobacteria: An important source of bioactive natural products. Environmental
Toxicology and Pharmacology 38(1): 172-188.
Maoka, T. 2020. Carotenoids as
natural functional pigments. Journal of Natural Medicines 74(1): 1-16.
Mata-Gómez, L.C., Montañez, J.C.,
Méndez-Zavala, A. & Aguilar, C.N. 2014. Biotechnological production of
carotenoids by yeasts: An overview. Microbial Cell Factories 13(1): 12.
https://doi.org/10.1186/1475-2859-13-12
Medema, M.H., Blin, K., Cimermancic,
P., de Jager, V., Zakrzewski, P., Fischbach, M.A., Weber, T., Takano, E. &
Breitling, R. 2011. AntiSMASH: Rapid identification, annotation and analysis of
secondary metabolite biosynthesis gene clusters in bacterial and fungal genome
sequences. Nucleic Acids Research 39(2): W339-W346.
Murtey, M. & Ramasamy, P. 2016.
Sample preparations for scanning electron microscopy - Life sciences. In Physics,
Optics and Lasers: Modern Electron Microscopy in Physical and Life Sciences, edited by Janecek, M. & Kral, R. InTech. pp. 163-185.
Ōmura, S., Ikeda, H., Ishikawa,
J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H.,
Nakazawa, H., Osonoe, T., Kikuchi, H., Shiba, T., Sakaki, Y. & Hattori, M.
2001. Genome sequence of an industrial microorganism Streptomyces
avermitilis: Deducing the ability of producing secondary metabolites. Proceedings
of the National Academy of Sciences 98(21): 12215-12220.
Page, A.J., Cummins, C.A., Hunt, M.,
Wong, V.K., Reuter, S., Holden, M.T.G., Fookes, M., Falush, D., Keane, J.A.
& Parkhill, J. 2015. Roary: Rapid large-scale prokaryote pan genome
analysis. Bioinformatics 31(22): 3691-3693.
Paulus, C., Rebets, Y., Tokovenko,
B., Nadmid, S., Terekhova, L.P., Myronovskyi, M., Zotchev, S.B., Rückert, C.,
Braig, S., Zahler, S., Kalinowski, J. & Luzhetskyy, A. 2017. New natural
products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18. Scientific Reports 7(1): 42382.
https://doi.org/10.1038/srep42382
Philippon, A., Slama, P., Dény, P.
& Labia, R. 2016. A structure-based classification of class A
β-Lactamases, a broadly diverse family of enzymes. Clinical
Microbiology Reviews 29(1): 29-57.
Poirel, L., Corvec, S., Rapoport,
M., Mugnier, P., Petroni, A., Pasteran, F., Faccone, D., Galas, M., Drugeon,
H., Cattoir, V. & Nordmann, P. 2007. Identification of the novel
narrow-spectrum β-Lactamase SCO-1 in Acinetobacter spp. from
Argentina. Antimicrobial Agents and Chemotherapy 51(6): 2179-2184.
Price, M.N., Dehal, P.S. &
Arkin, A.P. 2009. FastTree: Computing large minimum evolution trees with
profiles instead of a distance matrix. Molecular Biology and Evolution 26(7): 1641-1650.
Reddy, G.S.N., Pradhan, S.,
Manorama, R. & Shivaji, S. 2010. Cryobacterium roopkundense sp.
nov., a psychrophilic bacterium isolated from glacial soil. International
Journal of Systematic and Evolutionary Microbiology 60(4): 866-870.
Seemann, T. 2014. Prokka: Rapid
prokaryotic genome annotation. Bioinformatics 30(14): 2068-2069.
Sengupta, S., Chattopadhyay, M.K.
& Grossart, H.P. 2013. The multifaceted roles of antibiotics and antibiotic
resistance in nature. Frontiers in Microbiology 47(4).
https://doi.org/10.3389/fmicb.2013.00047
Silva, L.J., Crevelin, E.J., Souza,
D.T., Lacerda-Júnior, G.V., de Oliveira, V.M., Ruiz, A.L.T.G., Rosa, L.H.,
Moraes, L.A.B. & Melo, I.S. 2020. Actinobacteria from Antarctica as a
source for anticancer discovery. Scientific Reports 10(1): 13870.
Simão, F.A., Waterhouse, R.M.,
Ioannidis, P., Kriventseva, E.V. & Zdobnov, E.M. 2015. BUSCO: Assessing
genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19): 3210-3212.
Spellberg, B. & Gilbert, D.N.
2014. The future of antibiotics and resistance: A tribute to a career of
leadership by John Bartlett. Clinical Infectious Diseases 59(2): S71-75.
Suzuki, K.I., Sasaki, J., Uramoto,
M., Nakase, T. & Komagata, K. 1997. Cryobacterium psychrophilum gen.
nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic Actinomycete
to accommodate “Curtobacterium psychrophilum” Inoue and Komagata 1976. International
Journal of Systematic Bacteriology 47(2): 474-478.
Teoh, C.P., Wong, C.M.V.L., Lee,
D.J.H., González, M.A., Najimudin, N., Lee, P.C. & Cheah, Y.K. 2018. Genome
sequences of two cold-adapted Cryobacterium spp. SO1 and SO2 from Fildes
Peninsula, Antarctica. Current Science 115(9): 1706-1708.
Ventola, C.L. 2015. The antibiotic
resistance crisis: part 1: Causes and threats. P&T: A Peer-Reviewed
Journal for Formulary Management 40(4): 277-283.
Ye, R., Xu, H., Wan, C., Peng, S.,
Wang, L., Xu, H., Aguilar, Z.P., Xiong, Y., Zeng, Z. & Wei, H. 2013.
Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochemical
and Biophysical Research Communications 439(1): 148-153.
Zhang, D.C., Wang, H.X., Cui, H.L.,
Yang, Y., Liu, H.C., Dong, X.Z. & Zhou, P.J. 2007. Cryobacterium
psychrotolerans sp. nov., a novel psychrotolerant bacterium isolated from
the China No. 1 glacier. International Journal of Systematic and
Evolutionary Microbiology 57(4): 866-869.
Zhong, X., Tian, Y., Niu, G. &
Tan, H. 2013. Assembly and features of secondary metabolite biosynthetic gene
clusters in Streptomyces ansochromogenes. Science China Life Sciences 56(7): 609-618.
*Pengarang untuk surat-menyurat; email:
michaelw@ums.edu.my
|